Encryption Schemes with Post-Challenge Auxiliary Inputs
نویسندگان
چکیده
In this paper, we tackle the open problem of proposing a leakage-resilience encryption model that can capture leakage from both the secret key owner and the encryptor, in the auxiliary input model. Existing models usually do not allow adversaries to query more leakage information after seeing the challenge ciphertext of the security games. On one hand, side-channel attacks on the random factor (selected by the encryptor) are already shown to be feasible. Leakage from the encryptor should not be overlooked. On the other hand, the technical challenge for allowing queries from the adversary after he sees the ciphertext is to avoid a trivial attack to the system since he can then embed the decryption function as the leakage function (note that we consider the auxiliary input model in which the leakage is modeled as computationally hard-to-invert functions). We solve this problem by defining the post-challenge auxiliary input model in which the family of leakage functions must be defined before the adversary is given the public key. Thus the adversary cannot embed the decryption function as a leakage function after seeing the challenge ciphertext while is allowed to make challenge-dependent queries. This model is able to capture a wider class of real-world side-channel attacks. To realize our model, we propose a generic transformation from the auxiliary input model to our new post-challenge auxiliary input model for both public key encryption (PKE) and identitybased encryption (IBE). Furthermore, we extend Canetti et al.’s technique, that converts CPAsecure IBE to CCA-secure PKE, into the leakage-resilient setting. More precisely, we construct a CCA-secure PKE in the post-challenge auxiliary input model, by using strong one-time signatures and strong extractor with hard-to-invert auxiliary inputs, together with a CPA-secure IBE in the auxiliary input model. Moreover, we extend our results to signatures, to obtain fully leakage-resilient signatures with auxiliary inputs using standard signatures and strong extractor with hard-to-invert auxiliary inputs. It is more efficient than the existing fully leakage-resilient signature schemes.
منابع مشابه
Fuzzy retrieval of encrypted data by multi-purpose data-structures
The growing amount of information that has arisen from emerging technologies has caused organizations to face challenges in maintaining and managing their information. Expanding hardware, human resources, outsourcing data management, and maintenance an external organization in the form of cloud storage services, are two common approaches to overcome these challenges; The first approach costs of...
متن کاملDeterministic Public Key Encryption and Identity-Based Encryption from Lattices in the Auxiliary-Input Setting
Deterministic public key encryption (D-PKE) provides an alternative to randomized public key encryption in various scenarios (e.g. search on encrypted data) where the latter exhibits inherent drawbacks. In CRYPTO’11, Brakerski and Segev formalized a framework for studying the security of deterministic public key encryption schemes with respect to auxiliary inputs. A trivial requirement is that ...
متن کاملPublic-Key Encryption Schemes with Auxiliary Inputs
We construct public-key cryptosystems that remain secure even when the adversary is given any computationally uninvertible function of the secret key as auxiliary input (even one that may reveal the secret key informationtheoretically). Our schemes are based on the decisional Diffie-Hellman (DDH) and the Learning with Errors (LWE) problems. As an independent technical contribution, we extend th...
متن کاملPublic-Coin Differing-Inputs Obfuscation and Its Applications
Differing inputs obfuscation (diO) is a strengthening of indistinguishability obfuscation (iO) that has recently found applications to improving the efficiency and generality of obfuscation, functional encryption, and related primitives. Roughly speaking, a diO scheme ensures that the obfuscations of two efficiently generated programs are indistinguishable not only if the two programs are equiv...
متن کاملBrowse searchable encryption schemes: Classification, methods and recent developments
With the advent of cloud computing, data owners tend to submit their data to cloud servers and allow users to access data when needed. However, outsourcing sensitive data will lead to privacy issues. Encrypting data before outsourcing solves privacy issues, but in this case, we will lose the ability to search the data. Searchable encryption (SE) schemes have been proposed to achieve this featur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013